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Round goby Neogobius melanostomus sagittal (saccular) otolith morphology was compared

between males of the two alternative reproductive tactics (termed guarder and sneaker males)

and between males captured from sites of high or low contamination. Otolith size increased

with fish size and also displayed an ontogenetic shift in shape, becoming relatively taller as oto-

liths grew in size. Despite a considerable overlap in age between males adopting the two repro-

ductive tactics, size-at-age measurements revealed that guarder males are significantly larger

than sneakers at any given age and that they invest more into somatic growth than sneaker

males. Controlling for body size, sneaker males possessed heavier sagittal otoliths than guarder

males. Subtle otolith shape differences were also found between the two male tactics and

between sites of high and low contaminant exposure. Sneaker males had relatively shorter oto-

liths with more pronounced notching than guarder males. Fish captured at sites of high contami-

nation had otoliths showing slower growth rates in relation to body size and their shapes had

more pronounced caudal points and ventral protrusions when compared with fish captured at

sites of low contamination. The results are discussed in relation to life-history tradeoffs between

the male tactics in terms of reproductive and somatic investment as well as the putative meta-

bolic costs of exposure to contaminants. Overall, this study reveals that male alternative repro-

ductive tactics and environmental contaminants can have small, yet measurable, effects on

otolith morphology and these factors should be accounted for in future research when possible.
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1 | INTRODUCTION

Teleost otoliths have provided a powerful lens through which to bet-

ter understand fish biology and ecology (Popper et al., 2005). By

studying the structure and chemical composition of otoliths,

researchers have extracted a wealth of valuable information about fish

age (Campana & Thorrold, 2001), metabolism and somatic growth

rates (Armstrong et al., 2004; Colloca et al., 2003; Hoff & Fuiman,

1993), the timing of major life-history events (Neilson et al., 1985;

Rehberg-Haas et al., 2012) and even the chemical composition of the

environment (Elsdon & Gillanders, 2003, 2004). In particular, the sac-

cular (sagittal) otolith, one of three paired otoliths found within the

inner ear, displays high interspecific variation in shape and size and

relatively less intraspecific variation, making it useful for discriminating

between fish species (Campana, 2004; Schellart & Popper, 1992;

Tuset et al., 2003). For example, sagittal otolith morphology (i.e., size

and shape) has been used to identify various prey species and their

size classes in the diets of predators based on recovered undigested

otoliths from faecal samples (Radhakrishnan et al., 2010; Suter &

Morel, 1996). Though otolith shape generally varies less within-
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species compared with between-species, intraspecific variation in sag-

ittal otolith shape has also been used to discriminate between fish

stocks, populations, sexes and age-classes in many species (e.g.,

Atlantic cod Gadus morhua L. 1758; Campana & Casselman, 1993;

Cardinale et al., 2004; haddock Melanogrammus aeglefinus (L. 1758);

Begg & Brown, 2000; red snapper Lutjanus campechanus (Poey 1860);

Beyer & Szedlmayer, 2010; plainfin midshipman Porichthys notatus

Girard 1854; Bose et al., 2016). However, in order to confidently use

otolith morphology to discriminate between species, populations,

sexes, age classes, etc., it is important to understand the numerous

factors that can affect otolith size and shape (Mille et al., 2015).

Otolith morphology is influenced by both genetic and environ-

mental factors (Vignon & Morat, 2010). Numerous factors such as diet

(Strelcheck et al., 2003), rearing temperature (Hoff & Fuiman, 1993)

and habitat depth (Lombarte & Lleonart, 1993; Tuset et al., 2003,

2015) have been shown to correlate with otolith size and shape within

species, probably due to their influence on metabolism and growth. In

this study, two additional factors were investigated to assess their

potential effects on sagittal otolith morphology: male alternative

reproductive tactics and environmental pollutants. How these factors

affect otolith morphology has received minimal research attention to

date. This is rather surprising because many commercially-important

fishes, such as salmonids, express distinct male alternative reproduc-

tive tactics (Berejikian et al., 2011; Gombar et al., 2017; Jones, 1959)

and anthropogenic pollution is of increasing concern for aquatic eco-

systems (Bernhardt et al., 2017; Strayer & Dudgeon, 2010).

Alternative reproductive tactics (ART) occur in species when indi-

viduals of one sex express two or more distinct reproductive morphs,

with each morph attempting to gain reproduction through alternative

means (Gross, 1996; Neff & Svensson, 2013; Taborsky et al., 2008). In

most species with ARTs, males display a discontinuous distribution of

phenotypic traits, which results in two or more reproductive morphs

persisting together in a population that are morphologically, physio-

logically, or behaviourally distinct from one another. One morph is

typically classified as the conventional morph (often called the

guarder, parental or bourgeois morph) and is characterized by being

large, aggressive, territorial and acquires reproduction by courting and

physically competing for females, while the alternative morph (often

called the sneaker or parasitic morph) is typically small, non-aggressive

and secures reproduction by stealth, cuckoldry, or forced copulations

(Knapp & Neff, 2008; Taborsky et al., 2008). Otolith morphology is

known to differ between males adopting either of two alternative

reproductive tactics in P. notatus (Bose et al., 2016). Alternative repro-

ductive tactics could therefore be an important source of intraspecific

variation in otolith morphology that warrants further investigation.

ARTs can arise through various pathways. Tactics may be flexibly

expressed (such that individuals can switch between tactics through-

out their lifespan depending on current physiological, ecological, or

social condition, e.g., guppy Poecilia reticulata Peters 1859 (Godin,

1995)) or tactics can become established at an early age and be fixed

for life (e.g., bluegill sunfish Lepomis macrochirus Rafinesque 1819

(Gross, 1984, 1991); P. notatus (Bass et al., 1996)). Tactics may also be

expressed sequentially across a lifetime, such that individuals adopt

one tactic early in life and then switch to another tactic later in life

(e.g., Mediterranean wrasse Symphodus ocellatus (L. 1758); Alonzo

et al., 2000). Because otolith morphology does not alternate or change

rapidly on the same time scales as behaviour, flexible tactics are not

expected to be associated with specific otolith morphologies. How-

ever, otolith morphology is known to change ontogenetically

(Campana, 2004); consequently, males adopting sequential tactics

may differ in otolith morphology simply due to their inherent age dif-

ferences. Lastly, in species with fixed ARTs, suites of traits can co-

evolve rather independently between the tactics if intra-locus tactical

conflict is low or resolved (Morris et al., 2013; Pike et al., 2017). Thus,

otolith morphology could also differ between males expressing fixed

ARTs irrespective of their age (Bose et al., 2016).

Many environmental stressors, such as pollutants, affect metabo-

lism and therefore have the potential to alter teleost otolith growth

and morphology. For example, exposure to textile factory effluent

resulted in African catfish Clarias gariepinus (Burchell 1822), having

smaller sagittal otoliths for their body size than non-exposed fish

(Adeogun & Chukwuka, 2011). Other environmental stressors, such as

parasite load, can also affect resource allocation and growth and

influence sagittal otolith shape (e.g., European eel Anguilla anguilla

(L. 1758); Sahyoun et al., 2007). Because otolith morphology plays a

large role in many aspects of fisheries biology and many fishes live

and reproduce in environments that are affected by environmental

stressors, more research is needed to evaluate the relationship

between environmental contamination and otolith size and shape.

In this study, the effects of male ARTs and contaminant exposure

on sagittal otolith size and shape were investigated in the round goby

Neogobius melanostomus (Pallas 1814). Neogobius melanostomus is a

convenient study species for four reasons. First, N. melanostomus male

ARTs have been described morphologically and physiologically and

are easily categorized into two distinct morphs, a conventional

guarder tactic and a parasitic sneaker tactic (Bleeker et al., 2017; Mar-

entette et al., 2009). Although males may not be capable of rapidly

switching between tactics, it is currently not known if the two tactics

represent sequential or fixed strategies. Second, numerous previous

studies of N. melanostomus have revealed considerable variation in

body size within age classes (Duan et al., 2016; French & Black, 2009;

Gümüs & Kurt, 2009; Huo et al., 2014; MacInnis & Corkum, 2000;

Sokołowska & Fey, 2011). Unfortunately, none of these previous

studies accounted for the presence of male alternative reproductive

tactics. Third, N. melanostomus can be readily collected from both

highly polluted and less polluted sites. In this study, fish were col-

lected from sites in Hamilton Harbour, Ontario, Canada, an area of

heterogeneous sediment contamination based on historical industrial

steel production, urban run-off and combined sewer overflows

(Hamilton Harbour Remedial Action Plan, 1992, 2002; Zeman, 2009).

The movement and migration patterns of N. melanostomus still require

in-depth study, though several early mark–recapture studies have sug-

gested that guarder males are philopatric during their spring– summer

breeding season and possess small home ranges of c. 5 m2

(Marentette et al., 2011; Ray & Corkum, 2001). Philopatry combined

with a benthic lifestyle means that N. melanostomus comes in direct

contact with (contaminated) sediments and can remain in polluted

areas for long periods of time (Marentette et al., 2010). Fourth, as an

invasive species in the Laurentian Great Lakes and in western Europe,

considerable research efforts have been made to uncover how
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N. melanostomus might influence native ecosystems and food webs

and what can be done to mitigate their effect (e.g., Johnson et al.,

2010; Kornis et al., 2012; Taraborelli et al., 2010). Thus, understanding

what factors influence N. melanostomus populations and their growth

and age more generally is highly pertinent to current research on this

invasive fish.

In this study, three analyses were conducted. One, to gain insights

into whether ARTs in N. melanostomus are fixed or sequential, fish

size-at-age data were examined for overlap in age between the two

tactics. Two, to determine if males adopting different ARTs vary in

sagittal otolith morphology, otolith size and shape were quantified

and compared. Three, to uncover if contamination levels are reflected

in otolith morphology, otolith size and shape were quantified and

compared between fish collected from sites of high or low

contamination.

2 | MATERIALS AND METHODS

2.1 | Field collections

Reproductive adult male N. melanostomus were collected between

May and November 2016 (n = 341) from seven field sites in and near

Hamilton Harbour, Canada: LaSalle Park, Grindstone Creek, Desjardins

Canal, Fisherman's Pier, Pier 27, Sherman Inlet and Fifty Point Marina

(43� N; 79� W). Two of these locations, Sherman Inlet and Pier

27, were sites of considerable industrial contamination from historical

steel processing, urban run-off and combined sewer overflows

(Hamilton Harbour Remedial Action Plan, 1992, 2002) and were thus

classified as high contamination sites. Sediments at these sites contain

high concentrations of metals (e.g., cadmium, zinc, lead), polyaromatic

hydrocarbons (PAH) and polychlorinated biphenyls (PCB) that exceed

provincial guidelines for “probable effect levels” (PEL; Milani et al.,

2017; Neff et al., 2016). Specimens collected from these areas have

higher tissue burdens of metals, are smaller in body size, show evi-

dence of endocrine disruption via internal and external male intersex,

pelvic fin erosion and behavioural perturbations compared with

N. melanostomus collected from less contaminated sites (Marentette

et al., 2010, 2012; McCallum et al., 2014). The remaining five sites,

LaSalle Park, Grindstone Creek, Desjardins Canal, Fisherman's Pier

and Fifty Point Marina, are relatively less affected and were therefore

classified as low-contamination sites (Marentette et al., 2010;

McCallum et al., 2014). Specimens were caught using minnow traps

baited with c. 25 g of frozen corn and placed in the near-shore habi-

tat, following Young et al. (2010) and McCallum et al. (2014). The traps

were recovered 3–24 h later. All fish were euthanized with an over-

dose of 0.025% benzocaine (Sigma Aldrich; www.sigmaaldrich.com)

immediately upon capture, measured for total body mass (M, 0.001 g)

and standard length (Ls, 0.01 cm). The reproductive tactic of each

male was assigned based on external morphology and later confirmed

during dissection by examining the testes, seminal vesicles and calcu-

lating gonadosomatic index (IG; males with IG > 1% are considered

reproductive: Marentette & Corkum, 2008, Marentette et al., 2009;

Zeyl et al., 2014). During dissection, the two sagittal otoliths were

extracted, wiped clean and stored dry (Figure 1). Any otoliths that

were chipped or broken during the handling process were not used.

2.2 | Aging N. melanostomus sagittal otoliths

Neogobius melanostomus males of both reproductive tactics were cap-

tured from clean and contaminated sites between May and

November in 2007 and 2008 using the methods described above.

These males were aged from whole sagittal otoliths by an experi-

enced otolith reader with no prior knowledge of the N. melanostomus

tactics or site of origin (15 guarders and 16 sneakers in 2007,

19 guarders and 30 sneakers in 2008). Fish were selected randomly

from each of five body size categories based on total length (LT;

delimited by the 20th, 40th, 60th, 80th and 100th percentiles). This

selection ensured proportionate representation across all body sizes.

Otoliths were cleaned, immersed in water and viewed under trans-

mitted light at ×80 magnification with a Leica GZ6 stereomicroscope

(www.leica.com). Annuli of the otoliths were enumerated from the

core to the edge and the type and amount of growth at the edge

noted. A single age estimate was obtained for each fish. A linear

model (LM) was fit including Ls as the response variable and age esti-

mate, male reproductive tactic, site contamination level and year as

predictor variables. All interaction terms were investigated and

dropped from the models if non-significant.

2.3 | Quantifying sagittal otolith size

The samples collected in 2016 comprised 630 otoliths (289 pairs of

otoliths, 52 unpaired otoliths) from 341 males (154 guarders and

74 sneakers from clean sites; 53 guarders and 60 sneakers from

Caudal

Ventral
0.1 cm

Rostral

Dorsal

FIGURE 1 Examples of round goby Neogobius melanostomus sagittal otoliths displaying size and shape variation. The otolith surface that contacts

the auditory sensory epithelium, i.e., the sulcus acousticus, is facing down
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contaminated sites). Each otolith was weighed in duplicate using a dig-

ital microbalance (to the nearest 0.0001 g, Mettler Toledo, AB204-S/

FACT; www.mt.com) and then photographed against a black back-

ground under a dissection microscope (Nikon SMZ1500 scope; www.

nikon.com) at ×10 magnification (Q Imaging Retiga 2000R Fast 1394

CCD camera; www.qimaging.com) next to a 0.35 × 0.35 cm square to

provide scale. A summary of the fish and otoliths collected from each

field site is given in Table 1. A linear mixed-effects model (LMM) using

the lme4 package in R (www.r-project.org; Bates et al. 2015) was used

to test for differences in otolith size between reproductive tactics and

between sites of high and low contamination. Log-transformed otolith

mass (MO) was the response variable, with male alternative reproduc-

tive tactic, contamination level and their interaction as predictor vari-

ables and log Ls was included as a covariate. Field site was included as

a random intercept, as was fish ID, because most fish in the analysis

contributed two otoliths.

2.4 | Quantifying sagittal otolith shape

The digital photographs of sagittal otoliths were used to calculate the

surface area of each otolith (to the nearest 0.0001 cm2) with the

shape analysis software package SHAPE 1.3 (Iwata & Ukai, 2002). All

images of left otoliths were also flipped horizontally to be in the same

orientation as right otoliths before their shape was quantified using

the elliptic Fourier PCA provided by SHAPE. SHAPE uses elliptic Fou-

rier shape functions, which can accurately capture shape information

about enclosed contours (e.g., otoliths) in great detail (Kuhl & Giardina,

1982). The analysis describes contours as the sum of multiple ellipses,

or harmonics. Given an increasing number of harmonics, the shape of

any fully enclosed contour may be described with ever-improving

accuracy (Kuhl & Giardina, 1982). In this study, a total of 15 harmonics

were used to describe the shape of each N. melanostomus otolith. This

number of harmonics was obtained by using a Fourier power spec-

trum to determine how many harmonics would capture at least

99.9999% of the otolith shape (following Crampton, 1995). A PCA

based on a variance–covariance matrix was then implemented to

reduce the large number of coefficients into a more manageable num-

ber of principal components, each of which describes a different

aspect of otolith shape (for further details on methodology see

Crampton, 1995 and Iwata & Ukai, 2002). Four principal components

were found to be significant as determined by the broken-stick model

(Jackson, 1993) and a scree plot. While the scree plot displays how

much variation is explained by each principal component, the broken

stick model indicates the variation that would be explained by each

component by chance alone.

The PCA summarized the sagittal otolith shape variation from the

elliptic Fourier shape analysis into four principal components (Figure 2

(a)) explaining 32.9, 22.7, 10.9 and 7.3% of the total variation in shape

data (respective Eigen values are 1.91e−3, 1.32e−3, 6.30e−4 and

4.21e−4). Otolith shape variation (generated in SHAPE following Fur-

uta et al., 1995) described by each PC is shown in Figure 2(b).

Otolith shape was compared between male alternative reproduc-

tive tactics and sites of high and low contamination by fitting a linear

mixed-effects model for each significant principal component and

applying a conservative Bonferroni correction to maintain the family-

wise error rate at 0.05. Principal component scores were modelled as

response variables, while male alternative reproductive tactic (i.e.,

guarder v. sneaker), site type (i.e., high v. low contamination), otolith

surface area and all three of their pairwise interactions were included

as predictors. Field site and fish ID were both included as random

intercepts. Non-significant interaction terms were dropped from the

models. Yeo-Johnson power transformations were applied to the

response variables to optimize the normality of each model's residuals

(Yeo & Johnson, 2000). Heteroscedasticity in the data (i.e., variance in

shape tends to increase as otoliths get larger) was accounted for by

adding variance functions to the models that were selected to mini-

mize model AIC. All statistical analyses in this study were conducted

in R 3.3.1, (www.R-project.org).

TABLE 1 Summary of Neogobius melanostomus samples collected from field sites in Hamilton Harbour, Canada. Shaded regions indicate sites of

high contamination and unshaded regions indicate sites of low contamination

Male spawning tactic

n LS (cm) MO (mg)

Fish Otoliths Mean � S.D. Range Mean � S.D. Range

LaSalle Park Guarder 49 89 8.41 � 1.43 5.9–11.9 4.0 �1.63 1.4–8.1

Sneaker 35 65 5.93 � 1.03 4.1–9.5 2.0 �0.80 1.0–5.4

Grindstone Creek Guarder 5 10 8.00 �0.72 7.0–8.9 3.0 �0.37 2.4–3.5

Sneaker 2 4 6.25 �0.06 6.2–6.3 2.3 �0.13 2.1–2.4

Desjardins Canal Guarder 14 26 7.53 � 1.14 6.1–10.5 3.2 �1.19 2.3–6.7

Sneaker 5 7 6.11 � 1.42 4.5–8.1 2.0 � 0.64 1.1–2.8

Fisherman's Pier Guarder 34 59 9.03 � 1.11 6.6–11.1 4.4 � 1.02 2.3–7.0

Sneaker 12 23 6.26 � 1.10 5.0–9.1 2.4 � 0.86 1.3–4.7

Fifty Point Marina Guarder 52 97 9.05 � 1.30 6.8–11.6 4.8 � 1.48 2.6–7.9

Sneaker 20 38 6.91 � 0.86 5.7–8.5 3.2 �0.93 2.0–4.8

Pier 27 Guarder 28 53 7.21 � 1.09 5.6–9.2 3.1 � 0.94 1.9–5.1

Sneaker 27 50 5.22 � 1.05 3.8–8.4 1.8 � 0.66 1.0–3.4

Sherman Inlet Guarder 25 48 6.82 � 0.98 5.0–8.4 2.4 � 0.69 1.6–4.2

Sneaker 33 61 5.35 � 0.81 3.6–7.5 1.6 � 0.53 0.7–3.0

LS = standard length; MO = ototlith mass; n = Sample size.
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3 | RESULTS

Guarder males were on average larger (mean Ls � S.D. = 8.2 � 1.5 cm)

than sneaker males (5.8 � 1.1 cm) despite considerable overlap in age

(guarder-male age range = 1–4 years, mean � std. dev = 1.9 � 0.7

years; sneaker-male age range = <1–3 years, mean � S.D. = 1.2 � 0.5

years). The males used in this analysis were selected to cover the full

size range of each tactic and body sizes overlapped considerably

between the two male tactics (guarder-male Ls range = 5.0–11.9 cm,

sneaker-male Ls range = 3.6–9.5 cm). Guarder males tended to dis-

play faster somatic growth than sneaker males (indicated by a

steeper relationship between logLs and log(age)) though this differ-

ence did not quite reach statistical significance (LM: interaction term,

t = −1.90, d.f. = 64, P = 0.063; Figure 3). Note that the two sneaker

males found to be < 1 year old were estimated to be approximately

0.5 years old.
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Otolith mass increased with fish length (Figure 4) and this rela-

tionship was significantly steeper in fish from the sites of low contam-

ination compared with fish from sites of high contamination (LMM:

interaction term, t = 2.51, d.f. = 334.2, P < 0.05). Sneaker males also

possessed heavier otoliths for their body size than guarder males

(Figure 4), although this difference was only apparent in sites of low

contamination (LMM: interaction term, t = 2.51, d.f. = 332.2,

P < 0.05). This tactic difference persists even when the model is re-

run using only fish that fall in the body size overlap range between

sneaker and guarder males (LS range = 5.02–9.54 cm, LMM: body size

x contamination level interaction term, t = 1.76, d.f. = 261.6,

P > 0.05; tactic × contamination level interaction term, t = 2.45, d.

f. = 260.4, P < 0.05).

The shape of N. melanostomus sagittal otoliths changed with body

size. As fish grew, otoliths became relatively taller along the ventral–

dorsal axis (PC1, LMM, slopes differed between male tactics, guarder-

male slope, t = 14.01, d.f. = 287, P < 0.001; sneaker-male slope,

t = 5.31, d.f. = 287, P < 0.001, Figure 5(a)). Whereas, dorsal notches

(PC2, LMM: main effect slope, t = −3.14, d.f. = 288, P < 0.01,

Figure 5(b)), caudal points (PC3, LMM: main effect slope, t = −3.41,

d.f. = 288, P < 0.001, Figure 5(c)) and ventral protrusions (PC4, LMM,

slopes differed between site types, low contamination slope,

t = −4.55, d.f. = 287, P < 0.001; high contamination slope, t = −7.16,

d.f. = 287, P < 0.001, Figure 5(d)) all became less pronounced as fish

grew in size. Guarder-male otoliths became taller at a faster rate than

sneaker-male otoliths (PC1, LMM: interaction term, t = 3.89,

d.f. = 287, P < 0.001, Figure 5(a)). Sneaker-male otoliths also had a

more pronounced notch along their dorsal edge than did the otoliths

of guarder males (PC2, LMM: main effect, t = 2.82, d.f. = 338,

P < 0.01, Figure 5(b)). Fish from high contamination sites had otoliths

with more pronounced caudal points than fish from low-

contamination sites (PC3, LMM: main effect, t = −4.25, d.f. = 338,

P < 0.001, Figure 5(c)). Furthermore, the ventral otolith protrusion

became less pronounced at a faster rate in fish from high contamina-

tion sites than in fish from low contamination sites (PC4, LMM:

interaction term, t = −4.99, d.f. = 287, P < 0.001, Figure 5(d)). Note

that with the exception of PC1, these results are robust when the

models are re-run using only otoliths that fall within the size overlap

between sneaker and guarder-male otoliths (otolith surface area

range = 2.94–7.70 mm2) (PC1, interaction term, t = 1.19, d.f. = 228,

P > 0.05; PC2, main effect, t = 3.86, d.f. = 273, P < 0.001; PC3, main

effect, t = −3.93, d.f. = 273, P < 0.001; PC4, interaction term,

t = 2.63, d.f. = 228, P < 0.01).

4 | DISCUSSION

The study of otolith size and shape offers fisheries biologists and fish

ecologists a tool to investigate growth patterns across individuals,

assess population structure and manage fish stocks. By gaining a more

comprehensive understanding of the various factors that affect otolith

size and shape, the usefulness of otolith morphology analyses will be

further enhanced. For example, in many fish species the size of the

sagittal otolith is known to relate strongly to fish size and this relation-

ship can often be well-described with a simple linear regression

(Harvey et al., 2000; examples for Neogobius melanostomus, Duan

et al., 2016; Huo et al., 2014). Pooling all N. melanostomus from this

study, the relationship between otolith mass (y; mg) and fish Ls (x; cm)

is described by logy = 1.89logx − 2.68 and accounts for 90% of the

variability in the data. Thus, while sagittal otolith mass can be a strong

predictor of fish size, 10% still remains unexplained. The current study

investigated two largely unexplored factors that can explain additional

variation in sagittal otolith morphology, male ARTs and environmental

contamination.

4.1 | Somatic growth differs between male
reproductive morphs

Guarder males had larger body sizes and tended to have faster

somatic growth rates (P = 0.06) than sneaker males despite a consid-

erable overlap in age. Both male tactics also overlapped considerably

in body size, which is in contrast to the findings of Bleeker et al.

(2017) who found little to no overlap in the body sizes of the two

male tactics in several Dutch N. melanostomus populations. The pre-

sent data (overlapping ages and body sizes but different somatic

growth rates) lend support to the idea that male ARTs in

N. melanostomus represent two separate developmental pathways,

becoming fixed within the first year of life. Whether these tactics are

the result of a genetic polymorphism or the result of a genetically

based developmental switch point (Oliveira et al., 2008; Shuster &

Wade, 2003) still remains to be determined. It is possible that

N. melanostomus sneaker males still follow a sequential pathway,

beginning their lives as sneakers and eventually adopting the guarder-

male tactic later in life after surpassing a particular threshold. But,

clearly this switch point is not based on surpassing a single

population-wide body-size threshold. Rather, the switch point may

differ from individual to individual or even be socially determined.

More work is needed to uncover the proximate mechanisms that

underlie tactic expression in N. melanostomus.
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4.2 | Sagittal otolith size varies with male
reproductive tactic and environmental contamination

Although sagittal otolith mass increased with fish size, sneaker males

possessed heavier otoliths after accounting for body size than did

guarder males. A similar finding was documented by Bose et al. (2016)

in Porichthys notatus Girard 1854, a marine toadfish that expresses

two developmentally distinct fixed male ARTs that are also termed

guarder and sneaker males. One explanation for why sneaker males

might possess relatively heavier otoliths centres around tactic-specific

somatic growth rates; a common finding among fishes is that slower

growing individuals typically possess heavier otoliths compared with

faster growing individuals after accounting for body size (e.g., striped

bass Morone saxatilis (Walbaum 1792) (Secor & Dean, 1989);

P. reticulata (Reznick et al., 1989); gag Mycteroperca microlepis

(Goode & Bean 1879) (Strelcheck et al., 2003); salema Sarpa salpa

L. 1758 (Abaad et al. 2016)). Individuals that invest more into somatic

growth are expected to have smaller, lighter otoliths for their body

size than individuals that invest less into growth (Secor & Dean,

1989). In many fish species with male ARTs, guarder males invest

highly into somatic growth while sneaker males invest highly into

reproductive tissues at the expense of somatic growth; Marentette

et al. (2009) found that N. melanostomus guarder males were on

average 3.6 times heavier than sneaker males, but sneaker males pos-

sessed relative testes sizes that were on average 2.6 times greater

than guarder males. Further studies would be valuable to examine

what biological implications relative otolith size differences might

have on hearing or vestibular performance between the tactics.

Environmental contamination also appeared to affect the relation-

ship between otolith mass and fish size in N. melanostomus in this

study. First, the difference in relative otolith mass between sneaker

and guarder males was only apparent in sites of low contamination;

no difference in relative otolith mass could be detected between

males adopting the different tactics in sites of high contamination.

Second, all male N. melanostomus (of both tactics) captured at sites of

high contamination had slower otolith growth, given their body sizes

compared with males from sites of low contamination. Many environ-

mental contaminants and stressors are known to affect metabolism

through mitochondrial toxicity (Meyer et al., 2013; Jayasundara,

2017). Environmental pollutants may also increase ATP demand for

detoxification and cellular homeostasis, potentially altering otolith

growth rates relative to somatic growth. In this study,

N. melanostomus from sites of high contamination would have been

chronically exposed to PAHs, PCBs and metals such as lead, zinc and

cadmium in their environments (Milani et al., 2017; Neff et al., 2016;

RAP, 1992; Zeman, 2009). Previous studies also suggest that
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N. melanostomus from these high contamination sites have decreased

activity levels (Marentette et al., 2012), forage less, consume fewer

food items (McCallum et al., 2017) and are smaller in average body

size (McCallum et al., 2014) than fish from low contamination sites.

Thus, in order to understand the growth of N. melanostomus and their

otoliths in sites of high and low contamination, future work will be

required to evaluate the metabolic consequences of contaminants,

activity and feeding and how they all interplay with the very different

life history strategies adopted by each alternative male tactic.

4.3 | Sagittal otolith shape varies with male
reproductive tactic and environmental contamination

Neogobius melanostomus otoliths became proportionally taller as they

grew larger. However, the otoliths not only displayed a general onto-

genetic shift in shape as the fish grew, but otolith shape followed sub-

tly different trajectories depending on male tactic and the degree of

environmental contamination. Guarder-male otoliths grew taller at a

faster rate (described by PC1) and had less pronounced notches along

their dorsal edges (described by PC2) than did the otoliths of sneaker

males. Otoliths sampled from sites of high contamination had more

pronounced caudal points (described by PC3) and less prominent ven-

tral protrusions (described by PC4), compared with those from sites of

low contamination. Ontogenetic changes in otolith shape are com-

monly observed across fish species, where shape tends to become

progressively more species-specific as otoliths grow (Campana, 2004;

Lombarte & Castellón, 1991). What biological implications these

shape differences have on hearing or vestibular performance remains

to be evaluated. Nevertheless, the shape differences described here in

N. melanostomus are similar to those found in a previous study on

P. notatus, wherein sagittal otolith shape also differed between male

tactics and also differed between geographically-separated popula-

tions (Bose et al., 2016). Otolith shape is known to differ between

age-classes, sexes and populations in numerous species (e.g., Atlantic

mackerel Scomber scombrus L. 1758 (Castonguay et al., 1991); Gadus

morhua (Campana & Casselman, 1993); silver hake Merluccius bilinearis

(Mitchill 1814) (Bolles & Begg, 2000)).

Reports of otolith growth or structural alterations due to con-

taminant exposure are rare. Burbot Lota lota (L. 1758) living in

lakes polluted with PCBs and metals have shown crenulations or

lace-like growths on sagittal otoliths not present in other popula-

tions (Pulliainen & Korhonen, 1994). Alterations to otolith shape

could impair hearing in N. melanostomus, which rely, in part, on

sound to detect predators and communicate with conspecifics

(Rollo & Higgs, 2008). Also, fish with otolith malformations have

been shown to have altered behavioural responses to feeding stim-

uli, as well as increased cortisol levels relative to fish with normal

otoliths (e.g., red drum Sciaenops ocellatus (L. 1766) (Browning

et al., 2012)). It would be valuable to conduct controlled laboratory

studies rearing juveniles under exposure to various contaminants

as such studies would uncover which environmental pollutants

most drastically influence otolith morphology and what biological

consequences emerge.

In summary, the use of otolith morphology as a means to discrimi-

nate fish based on factors such as age, body size, sex and population

requires a strong understanding of all the factors that can influence

otolith size and shape (Mille et al., 2015). The present study makes

use of N. melanostomus to show that the relationships between sagit-

tal otolith morphology and fish size can depend in-part on male repro-

ductive tactic and the level of environmental contamination. It should

be stressed, however, that the effect sizes uncovered here are small.

Otolith shape displayed a high amount of variation that overlapped

between male tactics, degrees of environmental contamination and

across body sizes. As such, using otolith morphology alone to predict

male tactic and contaminant exposure history would be difficult. Nev-

ertheless, future studies on N. melanostomus could benefit by

accounting for variation between male ARTs as well as anthropogenic

pollutants (or other environmental stressors). For example, accounting

for this variation is important when attempting to use otolith mor-

phology to infer specific details about individual fish, such as their

body size. Furthermore, it has been common practice for studies to

estimate N. melanostomus size at age by using back-calculation tech-

niques (Duan et al., 2016; French & Black, 2009; Gümüs & Kurt, 2009;

Huo et al., 2014; MacInnis & Corkum, 2000; Sokołowska & Fey,

2011), the present study suggests that the efficiency of these tech-

niques could be improved by considering guarder males separately

from sneaker males. While alternative tactics are widespread among

fishes and anthropogenic effects on aquatic ecosystems are a growing

concern, their effects on otolith morphology have only rarely been

studied. Future studies using additional species and exposure regimes

would therefore be valuable to further characterize the effects of

ARTs and contaminants on otolith morphology.
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