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This study explores how muscle and liver energy stores are linked with social status and the social envi-
ronment in Neolamprologus pulcher, a cooperatively breeding fish that lives in colonies comprised of
up to 200 distinct social groups. Subordinate muscle energy stores were positively correlated with the
number of neighbouring social groups in the colony, but this pattern was not observed in dominant
N. pulcher. Furthermore, liver energy stores were smaller in dominants living at the edge of the colony
compared with those living in the colony centre, with no differences among subordinates in liver energy
stores. Subordinate N. pulcher may build up large energy stores in the muscles to fuel rapid growth
after dispersal, which could occur more frequently in high-density environments. Dominant N. pulcher
may use the more easily mobilized energy stores in the liver to fuel daily activities, which could be
more energetically demanding on the edge of the colony as a result of the increased predation defence
needed on the edge. Overall, this study demonstrates that both subordinate and dominant physiology
in N. pulcher varies with characteristics of the social environment. Furthermore, dominant and sub-
ordinate energy storage strategies appear to differ due to status-dependent variation in daily activities
and variation in the need to prepare for future reproductive or dispersal opportunities.
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INTRODUCTION

Individuals often store energy during times of high food availability or low energetic
demands and then later use these stores for energetically costly activities such as
reproduction, growth and migration (Dawson & Grimm, 1980; Jørgensen et al., 1997;
Arrington et al., 2006). While energy stores provide the resources necessary to carry
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out essential activities, unnecessarily large stores can reduce fitness by inhibiting
mobility and predator avoidance (Witter et al., 1994; Kullberg et al., 2000; Almbro &
Kullberg, 2008). Therefore, energy storage should depend on both current energetic
demands and anticipated future energetic requirements. Active individuals often have
smaller energy stores than individuals who are less active (Shine & Mason, 2005;
Sopinka et al., 2009). Furthermore, individuals with low current energetic demands, but
who anticipate high energetic costs in the future (e.g. to support reproduction, dispersal
or migration) should stockpile somatic energy stores (Doughty & Shine, 1998).

In group living species, dominance status often influences growth and energy stores
(Abbott & Dill, 1989; Sloman et al., 2000; Buchner et al., 2004; Sopinka et al.,
2009). Subordinate individuals often grow more slowly than dominants, due to a
variety of mechanisms including reduced food accessibility (Fausch, 1984; Sloman
et al., 2000) and increased physiological stress resulting from aggression by more
dominant individuals (Gilmour et al., 2005). Subordinates in several species with
size-based dominance hierarchies have decreased somatic growth, which may reduce
rank-related conflict with other individuals in their group [Neolamprologus pulcher
(Trewavas & Poll 1952): Heg et al., 2004; Hamilton et al., 2005; Hamilton & Heg,
2008; Amphiprion percula (Lacépède 1802): Buston, 2003; Amphiprion ocellaris
Cuvier 1830: Mitchell & Dill, 2005; Paragobiodon xanthosoma (Bleeker 1853): Wong
et al., 2007; Centropyge bicolor (Bloch 1787): Ang & Manica, 2010]. Subordinates
may also suppress their reproduction to minimize reproductive conflict with dominant
individuals (Bell et al., 2014). If given the chance to ascend in dominance, these
subordinates can grow rapidly (Heg et al., 2004) and quickly increase their gonadal
investment (Fitzpatrick et al., 2006, 2008; Heg, 2008). Having a ready source of
available energy for periods of intensive growth and gonad development is expected
to be advantageous, as larger individuals are better able to defend a newly acquired
territory or rank (Candolin & Voigt, 2001; Moore, 2009; Reddon et al., 2011) and tend
to have higher reproductive success (Olsson & Shine, 1996).

In addition to social rank within a group, the broader social environment should
also influence energy storage. Stored energy is expected to be important in densely
inhabited environments where individuals must frequently engage in energetically
costly social interactions with individuals from neighbouring groups (Grantner &
Taborsky, 1998; Taborsky & Grantner, 1998; Guderley & Couture, 2005; Castro et al.,
2006). For colonially breeding organisms, individuals on the edge of the colony may
also deplete their energy stores more quickly than individuals in the centre of the
colony, as they are likely to be more active against predators (Brown & Brown, 1987;
Forster & Phillips, 2009) and receive less cooperative defence from neighbouring
groups (Schädelin et al., 2012; Jungwirth et al., 2015).

In teleosts, muscles and the liver are important reservoirs for energy stores and
fuel reproduction, growth and energetically costly activities (Chellappa et al., 1989;
Huntingford et al., 2001). Because energetic stores in the liver are easily mobi-
lized (Chellappa & Huntingford, 1989), liver stores may be more important in
fuelling aggressive contests, defence and daily activities compared with muscle stores
(Chellappa & Huntingford, 1989; Sopinka et al., 2009). In contrast, energy stores in
muscles and other somatic tissues are much larger than those in the liver (Dawson
& Grimm, 1980; Jørgensen et al., 1997; Huntingford et al., 2001) and appear to be
used in conjunction with liver stores to fuel costly but long-lasting endeavours such
as reproduction and somatic growth (Jørgensen et al., 1997; Huntingford et al., 2001).
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Because these two sources of energy may be used for different purposes, energetic
stores in the liver and in the muscles may vary with respect to different individual or
environmental characteristics.

Variation in the social environment has not only been linked to differences in indi-
vidual behaviour (Kutsukake & Clutton-Brock, 2008; Hellmann & Hamilton, 2014;
Hellmann et al., 2015a) and reproductive patterns (Petrie & Kempenaers, 1998; Cohas
et al., 2006; Hellmann et al., 2015b), but is also expected to induce physiological
variation among individuals. This study evaluated how liver and muscle energy stores
correlate with both individual characteristics (i.e. sex and status) and characteristics of
the external social environment (i.e. spatial location on the edge v. centre of the colony,
density of neighbouring groups and proximity of the closest neighbouring group) in
wild groups of N. pulcher, a cooperatively breeding fish native to Lake Tanganyika,
East Africa. Neolamprologus pulcher form colonies of two to 200 territorial groups,
each with a dominant pair and one to 20 subordinate group members that form
size-based dominance hierarchies (Wong & Balshine, 2011). Subordinate males can
strategically restrain their growth when close in size (standard length, LS) to other
group members and increase in size quickly if they have an opportunity to ascend
in the dominance hierarchy (Heg et al., 2004). Both sexes show signs of subordinate
reproductive suppression (Fitzpatrick et al., 2006; Heg, 2008). A previous study in
this species linked liver size to variation in daily activity levels (Sopinka et al., 2009).

Liver energy stores are expected to reflect variation in daily activity. Specifically,
subordinates were predicted to have relatively larger liver stores than dominants, as
hepatic mass decreases with increasing activity in this species and subordinates tend
to be less active than dominants (Sopinka et al., 2009). Liver stores were also pre-
dicted to be smaller on the edge of the colony compared with the centre, potentially
due to higher antipredator defence on the edge of the colony (Brown & Brown, 1987;
Forster & Phillips, 2009), and smaller in areas with closer neighbouring groups, due
to an increased number of social interactions with neighbouring groups (Bergmüller
et al., 2005). Muscle energy stores were predicted to vary more in response to differ-
ences in future reproductive and dispersal opportunities. Because subordinates require
energy stores for future periods of rapid growth, subordinates were expected to have
large muscle energy stores, particularly in dense social areas where opportunities for
dispersal and dominance ascension in nearby social groups are likely to be high (Heg
et al., 2008). This effect should be particularly strong for males, who disperse more
frequently in this species (Stiver et al., 2007).

MATERIALS AND METHODS

F I E L D C O L L E C T I O N
Between February and April 2013, 51 N. pulcher groups were sampled in Kasakalawe Bay,

Lake Tanganyika, East Africa (8∘ 46′ S; 31∘ 46′ E) using scuba. Groups were located in seven
different colonies or subpopulations ranging in depth between 11 and 13⋅5 m. Colonies consist
of a clustering of distinct social groups each defending a rocky territory and are separated from
each other by large areas of sand and rocky rubble that are uninhabited by N. pulcher (Wong &
Balshine, 2011). Groups were identified as being on the edge of the colony if half or more of
that group’s territory bordered an unoccupied area with no other conspecific groups within 10 m
on that side of the territory (Hellmann et al., 2015b).

© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, doi:10.1111/jfb.12890



4 J . K . H E L L M A N N E T A L.

Using fence nets and hand-nets, all sexually mature dominant and subordinate individuals
[mature gonads and close to 35 mm LS (Taborsky, 1985)] were captured. Neolamprologus pul-
cher were identified as part of the focal group if they swam repeatedly under the territory rocks
without eliciting aggression from other N. pulcher within the territory boundaries. Within each
focal group, dominant and subordinate N. pulcher were differentiated based on size. Dominance
is very strongly linked to body size in this species (Reddon et al., 2011; Dey et al., 2013). The
largest male and female N. pulcher are almost always the dominant pair (Wong & Balshine,
2011). Parentage analysis on a sub-set of these groups confirmed that the dominant individuals
were correctly identified and collected in conjunction with their home territory (Hellmann et al.,
2015b). After collection, the distance to all conspecific neighbours within a 3 m radius was mea-
sured and territory size, which was defined as the area of rocks defended by the dominant male
and female, was recorded.

All collected N. pulcher were brought to the surface, where adult body mass (to the nearest
0⋅001 g) and LS (to the nearest 0⋅01 mm) were measured. Neolamprologus pulcher were
euthanized by immersion in a lethal concentration of benzocaine (ethyl p-aminobenzoate,
1⋅0 μg ml−1), and the livers and gonads were removed from adults and weighed. A section of
muscle spanning from the base of the dorsal fin to the base of the anal fin was removed, packed
on ice, transferred to the Lake Tanganyika Research Unit in Mpulungu and stored between
−20 and −80∘ C until they were later analysed for energetic density. In total, hepatic mass was
measured in 152 individuals, including dominant males (n= 41), dominant females (n= 37),
subordinate males (n= 26) and subordinate females (n= 48) across 51 groups, including
both edge groups (n= 17) and centre groups (n= 34). Hepatic mass was used as a proxy
for liver energy stores, as hepatic mass is tightly linked with liver energy stores and body
condition (Hilton, 1982; Arndt, 2000; Chippari-Gomes et al., 2005). It is possible that handling
procedures, including the time between capture and anaesthetic, may have altered the measured
physiological variables; however, all reported results are comparisons of relative stores between
individuals who were subjected to the same handling procedures and there is no a priori reason
to suspect that handling procedures would create biases between comparison groups.

C A L O R I M E T E R A NA LY S I S F O R M U S C L E S A M P L E S
Muscle samples were analysed for energetic content by measuring the number of calories

dry g−1 of tissue (energetic density). All muscle samples were thawed, weighed and placed in
a desiccating oven (60–70∘ C) for drying. Samples were dried for 24–72 h until the sample
mass was within 2% of the previous day’s mass. Samples were removed from the oven and
immediately ground into a fine powder using a mortar and pestle. Because the samples were too
small to run individually, samples were pooled using equal amounts of homogenized powder
from each individual (Dubreuil & Petitgas, 2009). Individuals were pooled based on status, sex,
spatial location (edge v. centre of colony) and number of neighbouring groups. Each pooled
sample consisted of two to four individuals. When the number of neighbouring groups within
3 m differed for individuals within a pooled sample, values were averaged across all individuals
in that sample.

Once pooled, ground muscle samples were mixed with benzoic acid [a standard of known
energetic density: 26⋅436 kJ g−1 (6318⋅4 cal g−1)] until the total composite sample mass
was >1 g. The mass of both muscle tissue and benzoic acid in each sample was recorded.
Composite samples of muscle tissue and benzoic acid were compressed into a pellet and
combusted using a Parr 6400 Automatic Isoperibol Calorimeter (Parr Instrument Company,
2010; www.parrinst.com) to determine energetic density (cal g−1 of dry mass converted into
kJ g−1). This technique, previously used for tissues of low energetic density (Doyle et al., 2007),
increased the total calories in each pooled sample above 20⋅92 kJ g−1 (5000 cal g−1), which
is required for the Parr 6400 Automatic Isoperibol Calorimeter to generate precise estimates
of energetic density. Values of muscle tissue energetic density (cal g−1 of dry mass converted
into kJ g−1) include energy released from the combustion of proteins, carbohydrates and lipids.
As lipids are the densest form of energy, however, values of total energetic density are highly
sensitive to variation in lipid stores (Anthony et al., 2000). In total, 57 pooled muscle samples
were processed, including pooled samples for dominant males (n= 17), dominant females
(n= 16), subordinate males (n= 10) and subordinate females (n= 14). Offering evidence that
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muscle energetic densities from pooled samples were equivalent to those from non-pooled
samples, the subordinate energetic density of muscle tissue in pooled samples that were frozen
after collection was statistically equivalent to non-pooled samples of 17 N. pulcher subordinates
collected from the same field site and then sun-dried after collection (Mann–Whitney U-test:
U = 187, P> 0⋅05). This suggests that pooling samples and freezing samples does not strongly
alter sample values compared with non-pooled, sun-dried samples.

S TAT I S T I C A L A NA LY S I S
General linear models (GLMs) were used to test predictors of muscle energy stores (cal g−1 of

dry mass converted into kJ g−1). Spatial location within the colony (centre v. edge), the density
of neighbouring groups (number of conspecific groups within 3 m) and sex were tested as fixed
effects in the model. To account for any potential differences in muscle energetic density due to
pooling, the number of individuals pooled per sample was included in the model. Mean LS of
the pooled individuals was also included in the model to account for the variation in energetic
density due to differences in size. To compare hepatic and gonadal mass (individual samples)
with muscle energetic density (pooled samples), hepatic mass and gonadal mass were averaged
for each individual in the pooled muscle samples.

General linear mixed models (GLMMs) were also used to test the influence of spatial loca-
tion, sex and distance to the closest neighbour on hepatic mass. The density of neighbouring
groups was not used in this analysis because it was highly correlated with the distance to the
closest neighbour, and evaluation of model fit using AIC values demonstrated that model fit was
improved by including distance to the closest neighbour over density. The non-hepatic mass of
the individual (total mass− liver mass) was included in the liver model as an additional fixed
effect to standardize for variation in individual size. Non-hepatic mass was used because it is
independent of hepatic mass. Total mass is correlated with hepatic mass and so the use of total
mass can generate the appearance of a positive relationship between body size and liver size
when one does not exist (Christians, 1999; Tomkins & Simmons, 2002). Finally, the focal group
of each individual was included as a random effect. For both liver and muscle energy stores, mod-
els for dominants and subordinates were run separately, as there were significant differences in
both muscle and liver stores between dominants and subordinates. For both models, interactions
were tested and non-significant interactions were removed. Analyses were performed in R 3.0.3
with the lme4 package (Bates et al., 2013; R Core Team; www.r-project-org).

E T H I C A L N OT E
Neolamprologus pulcher is neither endangered nor threatened. The physical territories were

minimally disturbed during collection and new social groups occupied the collected groups’
territories within 1–2 days post-collection. All methods, including euthanasia techniques, were
approved by the Zambian Department of Fisheries, The Ohio State University IACUC (protocol
ID 2008A0095) and the Animal Research Ethics Board of McMaster University (Animal
Utilization Protocol Number 10-11-71). These procedures adhered to the guidelines of the
Canadian Council for Animal Care and the Animal Behaviour Society.

RESULTS

M U S C L E E N E R G E T I C D E N S I T Y

Muscle energy density (dry mass) was significantly lower in dominants compared
with subordinate individuals [dominants: mean± s.e.= 13⋅154± 0⋅301 kJ g−1; subor-
dinates: mean± s.e.= 14⋅698± 0⋅280 kJ g−1; GLM: t52 = 3⋅73, P< 0⋅001; Fig. 1(a)].
Among dominants, energetic density in muscle tissue did not vary between males and
females, with the density of neighbouring groups or with the relative location of the
group within the colony (centre v. edge; Table I). For subordinates, muscle energetic
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Fig. 1. (a) Muscle energy stores and (b) hepato-somatic indices (IH) in dominant and subordinate Neolamprolo-
gus pulcher. Values are means with 95% c.i. In both cases, values were significantly higher in subordinates
compared with dominants (P<0⋅05).

density significantly increased as the density of neighbouring groups increased (Fig. 2),
but did not vary between individuals living on the edge v. the centre of the colony
(Table I). Subordinate males tended to have higher muscle energetic density than sub-
ordinate females, although this pattern did not reach significance (Table I).

There was no correlation between muscle energetic density and absolute or relative
liver size of the individuals (GLM; absolute: t43 =−0⋅88, P> 0⋅05; relative: t46 = 1⋅37,
P> 0⋅05). Among males, muscle energetic density significantly increased as absolute
gonadal mass decreased (GLM: t18 =−2⋅62, P< 0⋅05) and tended to increase as
relative gonadal mass decreased (GLM: t18 =−1⋅78, P> 0⋅05). For females, there was
no significant correlation between muscle energetic density and absolute or relative
gonadal mass (absolute: GLM: t18 =−0⋅78, P> 0⋅05; relative: GLM: t18 =−0⋅82,
P> 0⋅05).

H E PAT I C M A S S

Hepatic mass (after controlling for non-hepatic mass) was smaller in dominants
compared with subordinates [dominants: mean± s.e.= 0⋅41± 0⋅02%; subordinates:

Table I. Results of full models (general linear model, GLM) testing total energetic density
(kJ g−1 dry mass) in muscle tissue, controlling for variation in the number of individuals pooled
per sample and for variation in standard length of the pooled individuals. Dependent variables
tested include spatial location in the colony (centre v. edge territory), density of neighbouring
groups within 3 m and sex. Models were run separately for dominant and subordinate individ-
uals. Interactions between dependent variables were tested and all non-significant interactions

were removed from the model.

Dominant energetic density Subordinate energetic density

Predictors t25 P t17 P

Spatial location 0⋅96 >0⋅05 −0⋅05 >0⋅05
Density −0⋅81 >0⋅05 2⋅57 <0⋅05
Sex 1⋅34 >0⋅05 −1⋅83 >0⋅05
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Fig. 2. Muscle energy stores of subordinates in relation to the density of neighbouring groups within 3 m. The
curve was fitted by: y= 0⋅05x+ 13⋅8.

mean± s.e.= 0⋅45± 0⋅04%; GLMM: t100 = 2⋅03, P< 0⋅05; Fig. 1(b)]. Among dom-
inant individuals, there was a significant interaction between spatial location (centre
v. edge) and distance to the nearest neighbour, whereby hepatic mass significantly
increased as the distance to the nearest neighbour increased, but this effect was only
apparent for individuals living on the edge of the colony [Table II and Fig. 3(a)].
There was no significant relationship between hepatic mass and distance to the nearest
neighbour for dominants in the centre of the colony [Table II and Fig. 3(b)]. Dominant
hepatic mass did not vary between sexes. For subordinate individuals, there were no
differences in hepatic mass due to location on the edge v. centre of the colony, the
distance to the nearest neighbour or sex (Table II).

There were no significant relationships between relative liver size (hepatic mass:non-
hepatic mass) and gonad size (gonad mass:non-gonadal mass) for dominant males
(GLMM: t37 = 0⋅37, P> 0⋅05) dominant females (t33 = 0⋅96, P> 0⋅05) or subordinate

Table II. Results of full model (general linear mixed model, GLMM) testing hepatic mass,
controlling for non-hepatic mass. Dependent variables tested include spatial location in the
colony (centre v. edge territory), distance to closest neighbour and sex. Models were run sepa-
rately for dominant and subordinate individuals. Interactions between dependent variables were

tested and all non-significant interactions were removed from the model

Dominant hepatic mass Subordinate hepatic mass

Predictors t43 P t36 P

Spatial location −2⋅70 <0⋅01 −0⋅69 >0⋅05
Closest neighbour −1⋅47 >0⋅05 −0⋅41 >0⋅05
Sex −0⋅75 >0⋅05 0⋅81 >0⋅05
Location× closest neighbour 3⋅21 <0⋅01 – –
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Fig. 3. Dominant fish hepato-somatic indices (IH) (a) were positively correlated with distance to the nearest
neighbour on the edge of the colony (y= 0⋅0031x+ 0⋅00224) but (b) did not vary with distance to the nearest
neighbour in the centre of the colony.

males (t72 =−1⋅06, P> 0⋅05). For subordinate females, however, relative liver size sig-
nificantly decreased as relative gonad size increased (t14 =−2⋅19, P< 0⋅05).

DISCUSSION

This study explored variation in muscle and liver energy stores relative to individual
status and sex, as well as characteristics of the social landscape, in the social cichlid
Neolamprologus pulcher. Subordinates had higher energy stores in both the liver and
the muscle tissues compared with dominant individuals, even after controlling for dif-
ferences in body size. Furthermore, subordinate muscle stores increased as the density
of neighbouring groups increased, while dominant muscle stores showed no relation-
ship with the density of neighbouring groups. Instead, liver size in dominant individuals
was influenced by the distance to the nearest neighbour and the spatial location of their
territory. On the edge of the colony, liver size among dominants increased as distance
to the nearest neighbour increased, although this trend was not evident for dominants
in the centre of the colony. Collectively, these results suggest that energy storage varies
with the social environment and that this variation depends upon the social status of
the individual.

In this study, hepatic mass varied with the social environment in dominants, whereas
muscle energetic stores varied in response to the social environment in subordinates.
Liver glycogen and lipid levels (and therefore, hepatic mass; Hilton, 1982; Arndt, 2000;
Chippari-Gomes et al., 2005) are often smaller than energy stores found in the muscles,
but vary dynamically with daily activity (Chellappa et al., 1989; Arndt, 2000; Arring-
ton et al., 2006; Sopinka et al., 2009) and tend to be smaller in more active individuals
in this species (Sopinka et al., 2009). Muscle tissues represent one of the largest stores
of energy in the body and fuel daily activities and maintenance as well as long-term
priorities such as dispersal and maturation (Dawson & Grimm, 1980; Chellappa et al.,
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1989; Arrington et al., 2006). Therefore, these results suggest that smaller energy stores
in the liver may vary in response to variation in daily activities in dominants, whereas
larger energy stores in the muscles may vary in response to opportunities for life stage
changes, such as dispersal and dominance ascension, for subordinates.

In this study, dominant individuals had relatively smaller livers than subordinates;
this relationship was weakly significant, but is consistent with results of a prior study
on liver size in this species (Sopinka et al., 2009). It is also consistent with previ-
ous studies demonstrating that dominants are generally more active than subordinates
in this species (Sopinka et al., 2009), assuming prominent roles in territory defence
(Desjardins et al., 2008), within-group policing (Dey et al., 2013) and reproduction
(Hellmann et al., 2015b). Dominant liver size was smaller on the edge of the colony
relative to the centre, suggesting that dominants are more active on the edge of the
colony compared with the centre (Sopinka et al., 2009). This may be a result of an
increase in predation and defence effort by dominants on the edge of the colony. Colo-
nial breeding is frequent in many fish species and appears to have evolved to provide
antipredator benefits [Lepomis macrochirus Rafinesque 1819: Dominey, 1981; Mala-
canthus plumieri (Bloch 1786): Baird & Baird, 1992; Abudefduf abdominalis (Quoy
& Gaimard 1825): Tyler, 1995]. These antipredator benefits are often due to increased
overlap in defended areas (Dominey, 1981), allowing individuals to expend less energy
on antipredator behaviour. In many colonial species, however, individuals living on the
edge of the colony are vulnerable to predators approaching from the outside of the
colony (Brown & Brown, 1987; Forster & Phillips, 2009), particularly because neigh-
bours on the inside of the colony are unlikely to aid edge groups in defending against
predators coming from the outside of the colony (Schädelin et al., 2012; Jungwirth
et al., 2015). Because dominants on the edge of the colony may have a large area to
defend without help from neighbours, they may expend more energy engaging in costly
defensive behaviours than dominants in the centre.

Among dominants living on the edge of the colony, liver size was smaller when con-
specific neighbours were closer. Dominants with close neighbours probably expend
more energy interacting with individuals in neighbouring groups compared with dom-
inants that have more distant neighbours (Bergmüller et al., 2005). Clusters of groups
on the edge of the colony may also attract more predators than isolated groups on the
edge of the colony, thereby increasing the amount of defence performed by the dom-
inants (Heg et al., 2008). Interactions with both conspecifics and with predators are
probably energetically costly, and individuals who frequently interact with both are
expected to expend high levels of energy.

While subordinate liver or muscle energy stores did not vary between the edge and
the centre of the colony, subordinates did have higher muscle energetic stores in denser
areas. A high density of neighbouring individuals or groups has been linked to lower
food availability (Desy & Batzli, 1989) or increased opportunities for reproductive
activities (Petrie & Kempenaers, 1998; Griffith et al., 2002; Hellmann et al., 2015b),
both of which would probably be associated with reduced energetic stores. Instead,
variation in muscle energy stores in subordinates may be due to differences in disper-
sal opportunities between high-density and low-density areas. Across taxa, individuals
will often disperse to the closest neighbouring groups (Russell & Rowley, 1993; Doolan
& MacDonald, 1996; Heg et al., 2008; Drewe et al., 2009) and the number of dis-
persal opportunities tends to increase as the density of neighbouring groups increases
(Heg et al., 2008). In situations in which dispersal is likely, subordinates would benefit
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from having large energy stores to allow for rapid periods of growth and gonadal
development (Fitzpatrick et al., 2006), which would increase success when fighting
conspecific competitors and courting mates (Candolin & Voigt, 2001; Moore, 2009;
Reddon et al., 2011). As unnecessarily high energy stores can reduce survival rate by
reducing the ability to escape predators (Kullberg et al., 2000; Almbro & Kullberg,
2008), however, it may not be advantageous for subordinates with a low likelihood
of dispersing to retain these energy stores. Because males disperse more often in this
species (Stiver et al., 2007), male subordinates were expected to have higher energy
stores compared with female subordinates, which is consistent with the results of this
study.

This study is novel in its demonstration that both dominant and subordinate energy
allocation strategies vary in response to the social landscape. The results of this study
are consistent with the hypothesis that subordinates build large amounts of muscle
energy stores in high-density environments to accommodate increased dispersal oppor-
tunities and that dominants use liver energy stores, particularly at the edge of the colony,
to fuel energetically costly daily activities. Furthermore, these results suggest that dom-
inants vary energy stores in accordance with current demands, whereas subordinates
adjust their energy stores to plan for potential future energetic needs. Collectively, this
study demonstrates that energy stores in teleosts are not independent of the social con-
text and may be integral to success within both the physical and social landscape.
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