
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 M

ar
ch

 2
02

1 
royalsocietypublishing.org/journal/rspb
Research
Cite this article: Pepler MA, Hindra, Miller JS,
Elliot MA, Balshine S. 2021 Tactic-specific

antimicrobial activity suggests a parental care

function for accessory glands in a marine

toadfish. Proc. R. Soc. B 288: 20202873.
https://doi.org/10.1098/rspb.2020.2873
Received: 17 November 2020

Accepted: 23 February 2021
Subject Category:
Behaviour

Subject Areas:
behaviour, microbiology, evolution

Keywords:
paternal care, antibacterial, alternative

reproductive tactics, accessory glands,

plainfin midshipman, Batrachoididae
Authors for correspondence:
Marie A. Elliot

e-mail: melliot@mcmaster.ca

Sigal Balshine

e-mail: sigal@mcmaster.ca
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5330679.
© 2021 The Author(s) Published by the Royal Society. All rights reserved.
Tactic-specific antimicrobial activity
suggests a parental care function for
accessory glands in a marine toadfish

Meghan A. Pepler1, Hindra1, Jessica S. Miller2,3, Marie A. Elliot1

and Sigal Balshine2

1Department of Biology, and Institute for Infectious Disease Research, and 2Aquatic Behavioural Ecology
Laboratory, Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton,
Ontario, Canada
3Department of Biology, University of Waterloo, Ontario, Canada

MAP, 0000-0003-3843-1706; H, 0000-0002-8411-8123; JSM, 0000-0002-8225-1131;
MAE, 0000-0001-6546-5835; SB, 0000-0003-3671-0517

Males of some species possess extra reproductive organs called accessory
glands which are outgrowths of the testes or sperm duct. These organs
have a well-established role in reproduction; however, they also appear to
have other important functions that are less understood. Here, we investigate
the function of the highly complex accessory glands of a marine toadfish, Por-
ichthys notatus, a fish with two reproductive male types: large care-providing
‘guarder’males and small non-caring ‘sneaker’males. While both male types
have accessory glands, guarder male accessory glands are much larger rela-
tive to their body size. We show that accessory gland fluids strongly inhibit
the growth of bacterial genera associated with unhealthy eggs and have no
effect on the growth of strains isolated from healthy eggs. This antibacterial
effect was particularly pronounced for extracts from guarder males. Further-
more, we demonstrate that both healthy and unhealthy plainfin midshipman
eggs have diverse but distinct microbial communities that differ in their com-
position and abundance. The highly specific inhibitory capacity of accessory
gland fluid on bacteria from unhealthy eggs was robust across awide range of
ecologically relevant temperatures and salinities. Collectively, these ecological
and molecular observations suggest a care function for the accessory gland
mediated by antimicrobial agents.
1. Introduction
Parents often go to great lengths to ensure their offspring survive and thrive:
defending their young against predators, sheltering them from harsh envi-
ronmental conditions and provisioning them with nutrients [1–3]. A less
common care strategy involves the production of antimicrobial compounds to
protect developing young from infectious diseases. For example, invasive
Australian bull ants (Myrmecia gulosa) produce formic acid secretions that inhi-
bit fungal growth on their broods [4], and barn swallows (Hirundo rustica)
transfer bacterial-killing lysozymes to their offspring via egg albumen [5].
Males of two fish species, the redlip blenny (Ophioblennius atlanticus) and the
peacock blenny (Salaria pavo), have large external antimicrobial (lysozyme-
like)-producing organs called accessory glands that are rubbed on their eggs
[6], and removing these glands dramatically decreases egg survival [7].

Accessory glands are outgrowths of the testes or sperm duct and are found in
males of many species [8–11]. These morphologically diverse organs have been
proposed to contribute to sperm performance, sperm storage and activation,
sperm buffering from osmotic and ionic challenges, and production of mating
plugs, spermatophores and pheromones [11,12]. Accessory gland fluid can
also influence female receptivity and oviposition rates [13–16]. While accessory
gland fluid can markedly alter the chemical micro-environment of sperm and
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Figure 1. (a) (i) Schematic of the ventral surface of a male plainfin midship-
man fish dissected to show the testes and accessory glands, and their relative
positions in the body cavity. For clarity, other organs are not included.
(ii) Close-up view of the testes, accessory gland nodes and accessory
gland lobules. Illustration credit: A. Pathak. (b) Photographs of healthy (i)
and unhealthy (ii) plainfin midshipman eggs. Photograph credit: A.P.H.
Bose. (c) CFUs associated with healthy eggs (n=18) versus unhealthy eggs
(n=19). Mean ± s.e. for healthy eggs: 9560 ± 1453. Mean ± s.e. for
unhealthy eggs: 4100 ± 653. Significant differences are denoted by the
use of different letters. (Online version in colour.)
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eggs during fertilization, the role of these specialized glands
in parental care and antimicrobial protection is still poorly
understood. Unattended demersal fish eggs can be quickly
decimated by microbial infections [17], and previous work
suggests that accessory gland function in fishes may be
related to the care of young in these microbe-rich aquatic
habitats [6,7,15,18].

The plainfin midshipman fish (Porichthys notatus) has both
a structurally complex accessory gland (figure 1a) and two
alternative reproductive tactics [19,20]. Every spring, large
‘guarder’males excavate nests underneath rocks and produce
a low-frequency hum that attracts females [19]. After laying
bright yellow eggs, females desert the rocky nests, leaving
the guarder males to protect, aerate and hydrate the develop-
ing eggs over a 60-day period—an unusually lengthy and
costly care period for fishes [21,22]. During this time, guarder
males and eggs experience fluctuations in environmental con-
ditions (i.e. temperature, salinity, oxygen) as the tide height
oscillates and the nests are exposed [23]. However, not all
male plainfin midshipman fish provide care. Small ‘sneaker’
males do not excavate nests or court females. Instead, they
employ stealth tactics to steal fertilizations from guarder
males by either sneaking into the nest or by fanning sperm
in from the nest periphery [19]. Following fertilization, sneaker
males leave and provide no care for the young.

Our previous work has shown that accessory glands are
much larger in guarder males than in sneaker males, and
that these glands play a role in sperm performance by increas-
ing sperm velocity [20]; however, other possible functions for
these glands have not been investigated. The plainfinmidship-
man accessory glands have two distinct structures: nodes and
lobules (figure 1a), with guarder males investing more in the
lobule mass than sneakers [20]. Why such differences exist
between male types and what function is served by the acces-
sory glands have been long-standing questions [24–26]. Given
that guarder male accessory glands increase in size during the
caring season while those of sneaker males decrease over this
same period, we hypothesized that accessory glands might
also have a role in parental care by storing antimicrobial
fluids that can be applied to developing eggs [20].

Typically, males guard nests filled with bright yellow or
orange translucent eggs (healthy); however, on occasion, the
eggs turn white or grey, cloudy and opaque (unhealthy;
figure 1b). Because bacterial colonization can influence fish
egg health [27], we aimed to test whether accessory gland
extracts could influence bacterial growth. We collected
healthy/clear eggs and unhealthy/opaque eggs (figure 1b),
cultured a subset of their bacterial communities and assessed
whether accessory gland extracts from guarder and sneaker
males could affect the growth of these ecologically relevant
bacterial species. Furthermore, we investigated how accessory
gland extracts affected bacterial growth across environmental
conditions and explored the identity of a growth-inhibitory
agent associated with guarder male lobule extracts.
2. Methods and results
(a) Healthy and unhealthy midshipman eggs host

distinct bacterial communities
To culture bacteria associated with healthy and unhealthy
plainfin midshipman eggs (figure 1b), eggs were collected
from 37 nests (1 egg per nest taken from 18 healthy and
19 unhealthy broods) in the field using sterilized tweezers.
The eggs were suspended in glycerol and then stored at
−80°C until serial dilutions of the glycerol suspension could
be plated on marine agar medium [28]. Diverse microbial
communities were observed for all egg suspensions, with
colonies of varying size and colour represented. A represen-
tative colony of each phenotype (i.e. colonies with distinct
colour, size and texture) was profiled using 16S rRNA gene
sequencing (see the electronic supplementary material, S1
for details). It should be noted that the sequencing of pheno-
typically distinct colonies was not done on a per-egg basis,
and these isolates do not represent an exhaustive list of bac-
teria associated with the plainfin midshipman eggs. We
cultured 31 distinct isolates, which were identified as bac-
terial species representing 13 different genera (see the
electronic supplementary material S1, table S1). Most of the
isolated species were Gram-negative bacteria and many of
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the bacterial genera were shared between healthy and
unhealthy eggs, including Aquimarina, Cellulophaga, Flavobac-
terium, Phaeobacter and Psychrobacter. There were, however,
also genera exclusively associated with healthy eggs (e.g.
Algoriphagus, Celeribacter, Vibrio), or with unhealthy eggs
(e.g. Ahrensia, Leucobacter, Maribacter, Colwellia, Sulfitobacter).

Total colony-forming units (CFUs) were tallied and com-
pared for each of the healthy and unhealthy eggs examined.
We observed a higher abundance of CFUs from the healthy
egg samples than from the unhealthy eggs (t-test, t30 = 3.57,
est. ± s.e. = 5460 ± 1530, p = 0.001; figure 1c). Unexpectedly,
no fungal colonies were observed, even when the glycerol
suspensions were spread on fungal-specific growth media;
all but two isolates yielded 16S rRNA products (indicative of
bacteria), and the two refractory isolates also failed to yield
products when polymerase chain reaction amplifications
were conducted with fungal-specific 18S rRNA gene primers
(see the electronic supplementary material, S1 for details).
Spreading the contents of glycerol-only control vials (made
at the same time, using the same procedures and transported
together with the vials into which eggs were placed and
stored) on marine agar medium did not yield any CFUs, indi-
cating that the bacteria cultured in this study probably
originated from the plainfin midshipman nest environment.
2
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Figure 2. (a) Leucobacter growth inhibition by the accessory gland lobule
versus node extracts, from guarder and sneaker males. n=3 for each male
type and accessory gland region (lobule versus node). Significant differences
are denoted by the use of different letters and standard error bars are plotted.
Inset: photos of the growth inhibition bioassay showing an extract-infused filter
disc surrounded by an inhibition zone (dark ring around the filter disc; left)
versus a disc with no inhibition zone (right). The inhibition distance (mm)
was measured from the edge of the filter disc (see the electronic supplemen-
tary material, S2 for details). (b) Leucobacter growth inhibition by guarder male
accessory gland lobule extracts grown across a range of salinities ( full salt = 35
ppt, half salt = 17 ppt) and temperatures (°C). Three replicates were performed
per environmental condition. Standard error bars are plotted. Extracts from
12 individuals were combined for these experiments (see the electronic
supplementary material, S2 for details).
(b) Accessory gland extracts inhibit Leucobacter growth
Twenty-four guarder and 12 sneaker males were collected,
and their accessory glands were removed (see the electronic
supplementary material, S2 for details). The accessory
glands were divided into nodes and lobules, which were
then treated as separate tissues in this study. Fluids extracted
and pooled from nine guarder male lobules were tested
against all typed (by 16S sequence) bacterial isolates from
healthy and unhealthy eggs (electronic supplementary
material S1 and table S1) using a disc diffusion bioassay (see
the electronic supplementary material, S2 for details). Of the
31 species initially tested, only the growth of Leucobacter (an
unhealthy egg isolate) was impacted by the guarder lobule
extracts, with a clear inhibition zone observed (figure 2a
inset). These results suggested that the guarder lobule extracts
had bactericidal activity with unusual specificity. Lobule
extracts from individual sneaker males showed low-level
growth inhibition of Leucobacter, but this was 3 times less
potent than equivalent volumes of lobule extract from individ-
ual guarder males (n=6; inhibition zone distances were
measured and compared with a t-test, t4 = 15, est. ± s.e. =
2.26 ± 0.15, p < 0.001; figure 2a). Extracts from individual guar-
der and sneaker male nodes (n=6) were also tested for their
ability to inhibit Leucobacter growth, but neither had any
effect (no inhibition zone was observed; figure 2a).

In the wild, plainfin midshipman—and their eggs in the
intertidal zone nests—experience wide temperature and sal-
inity fluctuations with the daily incoming and receding
tides [23,29]. To explore the antibacterial activity of the guar-
der lobule extracts under more ecologically relevant
conditions, pooled lobule extracts from 12 guarder males
were tested for their ability to affect Leucobacter growth at
temperatures ranging from 4°C to 30°C in ‘full salt’ (35 ppt)
and ‘half salt’ (17 ppt) media conditions (see the electronic
supplementary material, S1 for details). Under all of these
conditions, the extracts showed strong growth inhibition
(based on the size of the inhibition zone; figure 2b).
(c) Extracts specifically inhibit the growth of diverse
genera from unhealthy eggs

Given the unexpected Leucobacter-specificity of the guarder
lobule extracts, we wanted to determine whether Leucobacter
species were commonly associated with plainfin midshipman
eggs, and if so, what frequency they were associated with
healthy versus unhealthy eggs. We plated glycerol serial
dilutions from the same 37 eggs as in our initial screen.
From these plates, we cultured 10 additional isolates (five
from unhealthy eggs and five from healthy eggs) with pheno-
typic similarity to Leucobacter (small, circular, pale yellow
colonies) and sequenced their 16S rRNA gene fragments.
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We found that none of these isolates were Leucobacter, but
instead were phylogenetically diverse bacterial species from
the Bacillus, Erythrobacter, Formosa, Humibacter, Microbacterium,
Micrococcus, Psychrobacter and Staphylococcus genera (elec-
tronic supplementary material S1, table S2). Each of these
isolates was also tested for their sensitivity to the guarder
male lobule extracts (using pooled samples from 12 males).
Intriguingly, none of the genera isolated from healthy eggs
were affected by the lobule extracts, while the growth of all
but one of the genera (Micrococcus) isolated from unhealthy
eggs were inhibited by the lobule extracts. Most of the suscep-
tible unhealthy egg isolates were Gram-positive bacteria, with
the exception of the Gram-negative Formosa isolate belonging
to the Flavobacterium family. This was unexpected, consider-
ing all other species from the Flavobacterium family isolated in
this study (Cellulophaga, Maribacter, Aquimarina) were resistant
to the guarder lobule extracts (figure 3). Hence, guarder lobule
extracts inhibit the growth of specific bacterial genera within
diverse families and phyla and have no discernible effect on
culturable bacteria associated with healthy eggs (figure 3).

(d) Inhibitory activity of lobule extracts is mediated by
non-proteinaceous molecule(s)

To further test the antimicrobial specificity of the guarder
lobule extracts (pooled from 12 males), we assessed whether
those extracts could impact the growth of Micrococcus luteus:
a close relative of Leucobacter (same actinobacterial phylum).
Micrococcus luteus is generally susceptible to many antibiotics
[30] and is known to be exquisitely sensitive to the effects of
lysozyme [31]. We found M. luteus growth was unaffected by
the guarder lobule extract, which suggested that the active
molecule in the guarder lobule extracts was not a lysozyme.

To test whether the growth-inhibitory compound(s) was a
lysozyme-like protein, or some other protein, the same
pooled lobule extracts from 12 guarder males were treated
with proteinase K (a protease with flexible cleavage capabili-
ties). We first confirmed that proteinase K alone did not affect
Leucobacter growth using the growth inhibition bioassay,
before testing whether proteinase K treatment of guarder
lobule extracts led to a loss of antimicrobial activity. We
found the protease-treated extracts retained their Leucobacter
growth-inhibitory activity (figure 4a), suggesting that the
inhibitory molecule was not a protein. To ensure that protein-
ase K could cleave proteins in the guarder lobule extracts, we
separated proteinase K-treated and -untreated lobule extracts
using sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis (SDS–PAGE) and observed effective degradation of
the proteins in the lobule extract (figure 4b). While we
cannot exclude the possibility that the inhibitory activity
was owing to a low abundance protease-resistant protein
that was undetectable on our gels, our results suggest that
the antimicrobial properties associated with lobule extracts
are unlikely to be lysozyme-like or protein-mediated.

We further assessed the composition of the lobule extracts
using liquid chromatography mass spectrometry (LC/MS) to
compare the metabolic profiles of lobule extracts from snea-
kers (pooled from four males) and guarders (pooled from
12 males). The metabolic profiles of these extracts were con-
sistently distinct: some peaks differed in abundance but
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Figure 4. (a) Growth inhibition bioassay using proteinase K-treated guarder male lobule extracts. The inhibition zone around the filter disc is indicated. (b) Ten per
cent denaturing SDS–PAGE showing the effects of proteinase K on guarder male lobule extracts and control proteins. Lane 1: bovine serum albumin (BSA) alone
(negative control). Lane 2: BSA treated with proteinase K ( positive control). Lane 3: BSA and lobule extract treated with proteinase K. Lane 4: 1 : 50 dilution of
undigested lobule extract (negative control). (c) Chromatograms of guarder male and sneaker male accessory gland lobule extracts based on total ionization (black
lines) and UV spectra (red lines). Sneaker lobule extracts were pooled from four individuals and guarder lobule extracts were pooled from 12 individuals in these
experiments (see the electronic supplementary material, S2 for details). (Online version in colour.)
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seemed to be shared between samples, while others appeared
unique to each male type (figure 4c). Comparing the mass
spectra of compounds within the lobule fluids did not
reveal any match with known antimicrobials. Collectively,
these results suggest that the compound(s) capable of inhibit-
ing the growth of unhealthy egg-associated microbes may be
a unique small molecule(s).
3. Discussion
Here, we report on an effective but understudied form of
parental care: producing antimicrobial compounds and
presumably secreting them onto developing eggs [2,3]. We
show that fluids contained within the plainfin midshipman
accessory glands inhibited the growth of bacteria isolated
from unhealthy eggs but did not affect the growth of bacteria
isolated from healthy eggs. Importantly, the antimicrobial
activity was confined to the lobules and this activity was sig-
nificantly more pronounced—and more potent—for caring
guarder males compared with non-caring sneaker males.
The guarder male accessory gland lobules increase in size
throughout the caring period [20], which, when considering
the antimicrobial activity associated with these lobules, is
consistent with the idea that guarder males invest in their
accessory glands to protect their developing young. Further-
more, given that guarder male lobule and node extracts
were previously found to have similar impacts on sperm
performance (i.e. both lobule and node extracts increased
guarder male sperm velocity), this functional difference
between the lobules and nodes in the context of parental
care is notable. Further characterizing these fluids to under-
stand the components responsible for each function is a
priority for future investigations.

The growth of five phylogenetically disparate genera from
unhealthy eggs was inhibited by the extracts from guarder
male lobules. These susceptible bacteria represented three
phyla: the Gram-positive Actinobacteria (Leucobacter and
Microbacterium) and Firmicutes (Bacillus and Staphylococcus),
and the Gram-negative Bacteroidetes (Formosa). Importantly,
growth inhibition was not observed for all members of these
phyla, with M. luteus, a common ‘indicator’ (antibiotic-
susceptible) bacterium and close relative of Leucobacter and
Microbacterium, exhibiting resistance to the inhibitory agent.

An obvious question is whether the unhealthy egg-associ-
ated bacteria are the cause or the consequence of egg death/
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disease. These bacteria may directly infect plainfin midship-
man eggs, and this action could provide strong selective
pressure for the production of an antimicrobial agent that
inhibits their growth. Among the genera susceptible to the
guarder extracts, only Staphylococcus and Microbacterium are
known to cause disease in fishes [32,33], while Leucobacter,
Formosa and Bacillus, to the best of our knowledge, have not
been investigated in relation to fish disease. Indeed, Bacillus
spp. have been more commonly studied for their probiotic/
protective potential in aquatic environments than for their
pathogenic properties [34–36]. While Leucobacter is not a
known fish pathogen, it is a pathogen of the nematode
Caenorhabditis elegans, owing in part to its ability to produce
robust biofilms in the C. elegans uterus [37]. Whether
Leucobacter forms deleterious biofilms on plainfin midship-
man eggs remains an important question to address in the
future. There are many other ways that bacterial colonization
could adversely affect developing fish embryos, including
penetrating the eggshell and causing disease; releasing
toxins and enzymes that are detrimental to embryonic
development; and generating a damaging hypoxic environ-
ment for the developing embryo [27]. Whether, and how,
any of these extract-inhibited genera impact egg development
remains to be determined.

Alternatively, some bacterial species associated with
plainfin midshipman eggs may be beneficial to egg develop-
ment. These beneficial isolates may have originated from
parent reproductive microbiomes in the male accessory
glands or from the female reproductive system [38]. A grow-
ing body of literature is suggesting that reproductive
microbiomes can have positive—and negative—effects on
reproductive success and offspring survival [38]. The antimi-
crobial properties of the lobule extracts may function to
maintain beneficial bacteria on the plainfin midshipman
eggs by specifically inhibiting the growth of other (possibly
environmental in origin) bacteria. This possibility may be
supported by our observations that more culturable bacteria
were associated with healthy eggs (figure 1c), although it
should be noted that our data do not take into account any
unculturable bacteria that may be associated with healthy
and unhealthy eggs.

To address this question, our future work will involve
more broadly defining the microbiome of healthy and
unhealthy plainfin midshipman eggs using metagenomic
shotgun sequencing. This could allow us to identify both cul-
turable and unculturable species and facilitate quantitative
analyses of microbial diversity and abundance. We are also
interested in addressing why egg death (and presumed bac-
terial infection) is commonly observed in wild nests under
the care of guarder males, given the observed antimicrobial
properties of their accessory glands. Do these fluids need con-
tinual application? Could fluid depleted males lose their
broods because the efficacy of their gland fluid diminishes?
Future investigations will allow us to address these questions
and shed additional light on accessory gland function and
an apparently unique mode of parental care and microbial
community modulation.

The specificity and apparent non-proteinaceous nature of
the lobule-associated antimicrobial activity is particularly
intriguing, as all previously characterized antimicrobial
secretions from caring fish parents have been lysozyme-like
compounds [6,7,15]. LC/MS analyses revealed distinct meta-
bolic profiles of the fluids extracted from accessory gland
lobules of guarder and sneaker males. Some peaks were
present in both male types but were more abundant in guar-
der male lobule extracts (e.g. peak at 11 min in the UV
spectra; figure 4c); these are of interest, as they are correlated
with the difference in antimicrobial potency between the
two male types (figure 2a). Notably, none of the associated
mass spectra matched those of known antimicrobial
compounds. Further isolation and characterization of the
inhibitory molecule(s) will be necessary to determine its
identity and the mechanism underlying the specificity of its
growth inhibition.

In summary, by combining ecological marine fieldwork
with microbiological laboratory studies, we have uncovered
an ecologically relevant, potentially novel antibacterial
agent employed by a marine toadfish from the intertidal
zone of the North American coast. Extracts from the guarder
male accessory gland lobules inhibited the growth of bacteria
associated with unhealthy eggs with remarkable specificity,
having no effect on the growth of bacteria associated with
healthy eggs. Our findings suggest that these reproductive
glands function in paternal care, as only the caring males
invest heavily in the antimicrobial-containing lobule struc-
tures. A better understanding of the function of accessory
glands broadly across taxa may aid in our understanding of
the evolution of these extra reproductive glands, and in the
case of our particular study, may reveal a source of new anti-
microbial agents.
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